Purdue will use Hyphenated Systems's 3Dmap to characterise structure in advanced microfluidic devices and to develop advanced techniques to characterise fluid flow through these structures
Hyphenated Systems, a world-wide provider of hybrid microscopy solutions for three-dimensional (3D) imaging and metrology in micro- and nanotechnology, announced today a joint development project (JDP) with the Purdue University Microfluidics Laboratory (West Lafayette, IN).
Purdue will use Hyphenated Systems's 3Dmap to characterise structure in advanced microfluidic devices and to develop advanced techniques to characterise fluid flow through these structures.
Hyphenated Systems's 3Dmap (microfluidics analysis platform) uses advanced confocal microscopy to visualize and measure 3D structure with sub-micron resolution.
The Purdue Microfluidics Laboratory performs fundamental research into the structure and function of microfluidic devices and is actively involved in the development of new designs and the experimental techniques needed to understand and predict their performance.
3Dmap enhances the laboratory's commercial and research capabilities and will provide important feedback to Hyphenated Systems about the needs of the industry.
"We are truly excited to have the 3Dmap system in our laboratory," said Steve Wereley, director of the Purdue Microfluidics Laboratory.
"The system is unique in its ability to characterize some of the very complex structures that we are developing.
"Equally important, its advanced confocal technology has the potential to characterize flow in three dimensions as well.
"Existing two-dimensional flow characterization is limited by its inability to discriminate the relatively fast flow in the middle of the channel from the slower flow in the boundary layer at the bottom of the channel".
"In addition to its potential for 3D flow measurements, 3Dmap provides broad capability to measure the materials and structures typically found in microfluidic devices," said Terence Lundy, vice president and managing director, Hyphenated Systems.
"These include subsurface structures in transparent materials, rough surfaces, and steeply sloped surfaces-all of which are problematic for alternative technologies such as interferometry or scanning probe microscopy.
"3Dmap's open architecture, both the hardware and software, is specifically designed to facilitate the incorporation of ancillary techniques like flow measurement."