Scientists has uncovered the structure of the protective protein coat which surrounds many bacteria like a miniature suit of armour.
The study has far ranging consequences in helping to understand how some pathogenic bacteria infect humans and animals, and could help us develop new vaccines.
Until now, scientists have known very little about the structure and function of this coat, which researchers call S-layer, despite the fact that some bacteria invest as much as a third of their total protein production in building it.
The team of scientists from the UK, France and Belgium, were able to image the S-layer of a harmless soil bacterium called Geobacillus stearothermophilus down to the scale of a single atom.
They revealed that the individual proteins of the protective layer hook together much like the chainmail of a medieval knight.
Dr Stefan Howorka, of UCL (University College London), led the work in the UK. He said: “These protein coats have remained quite mysterious to scientists even though they are found on a huge variety of bacteria.
“Using advanced imaging techniques, we have uncovered for the first time the structure of an S-layer in remarkable detail showing that the protein subunits are linked together in a manner resembling a chainmail. This remarkably optimized layer not only provides a tough but flexible coat of armour to protect the bacterium, but is also permeable allowing nutrients and other substances to diffuse in or out.”
This chainmail coat supports the shape of bacteria and protects them from environmental hazards. The coat is also thought to be important in allowing many pathogenic bacteria to infect cells, helping germs to stick to and slide into human or animal cells where they can wreak havoc. Other pathogens coat themselves with a protein lattice that makes them invisible to the “radar” of the immune system.
Howorka continued: “Now that we have worked out how to obtain the structure of the S-layer in one bacterium, we expect that the structure of the protein coats of other species will soon be revealed.
“Uncovering the bacterial armour of pathogens like the superbug Clostridium difficile or of Bacillus anthraci, the bacterium responsible for anthrax, is now a high priority for many scientists.”
The remarkable structure of the S-layer coat also holds promise as a carrier for vaccines.
By exploiting the ability of these coats to self-assemble from their individual building blocks it should be possible to construct hybrid vaccines that fuse harmless S-layers with bits of proteins from pathogenic bacteria.